Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.084$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[cis-diaqua(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ -manganese(II)]- $\mu_{2}-5$-sulfonatosalicylato- $\left.\kappa^{2} O: O^{\prime}\right]$

The title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, comprises a one-dimensional chain in which each Mn atom displays a distorted octahedral geometry. Hydrogen-bonding interactions between chains generate a two-dimensional architecture.

Comment

Recently, much attention has been paid to metal complexes of 5-sulfosalicylic acid ($\mathrm{H}_{3} \mathrm{ssal}$) because of the structural diversity and biological interest of this ligand (Fan, Cai et al., 2005; Gao et al., 2005; Fan, Zhu et al., 2005a). In our previous work on the manganese(II) 1,10-phenanthroline (phen) complex $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{Hssal}) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (II), the doubly deprotonated 5-sulfosalicylate does not coordinate to the metal atom (Fan, Zhu et al., 2005b), partly because the phen ligand can strongly chelate to the metal atom. Therefore, a new synthetic procedure, a two-step reaction method, was introduced to the $\mathrm{Mn}^{2+} / \mathrm{H}_{3} \mathrm{ssal} / \mathrm{phen}$ system and, as expected, the Hssal^{2-} coordinated complex, (I), was synthesized.

(I)

In the title complex, the $\mathrm{Mn}^{\mathrm{II}}$ atom adopts a distorted octahedral geometry defined by two N donors from one phen ligand, two O atoms from two cis water molecules and two O atoms, one from a sulfonyl and one from a carboxyl group of two different Hssal^{2-} ligands (Fig. 1 and Table 1). The $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{Mn}-\mathrm{O} w$ distances are similar to those of (II). The 5sulfonatosalicylate ligand acts as a linker using one sulfonyl and one carboxyl O atom to extend the structure into a onedimensional chain (Fig. 2). Hydroxy and uncoordinated carboxyl O atoms form intrachain hydrogen bonds with a carboxyl group and a water molecule, respectively. Between chains, water molecules and sulfonyl O atoms form intermolecular hydrogen bonds, generating a two-dimensional hydrogen-bonding network (Fig. 3 and Table 2).

Received 31 May 2005
Accepted 6 June 2005
Online 10 June 2005

Comparison of (II), $\left[\mathrm{Mn}(\mathrm{phen})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$, with (I), [$\mathrm{Mn}($ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{Hssal})\right]$, shows that one phen ligand in II is replaced by an Hssal ${ }^{2-}$ ligand in (I). Two such diverse structures were constructed by different synthetic procedures. For (II), a one-pot synthesis was used, while for (I), a two-step reaction method was used, i.e. phen was added after the metal salt had completely reacted with 5 -sulfosalicylic acid in the presence of a weak base. Therefore, multi-step reactions are very useful in the construction of different architectures.

Experimental

A mixture of $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.199 \mathrm{~g}, 1.0 \mathrm{mmol}), 5$-sulfosalicylic acid dihydrate $(0.050 \mathrm{~g}, 0.20 \mathrm{mmol})$, and 4% pyridine $(2 \mathrm{ml})$ in water $(20 \mathrm{ml})$ was stirred for $17 \mathrm{~h} .1,10-$ Phenanthroline ($0.040 \mathrm{~g}, 0.20 \mathrm{mmol}$) was then added. The resulting solution was put aside and the solvent was allowed to evaporate at room temperature. After three weeks, pale-yellow block-shaped crystals were obtained.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=487.34$
Monoclinic, $P 2_{1} / c$
$a=14.4166$ (9) A
$b=7.7234$ (5) \AA
$c=18.6868$ (11) \AA
$\beta=107.421$ (1) ${ }^{\circ}$
$V=1985.2(2) \AA^{3}$
$Z=4$

$D_{x}=1.631 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 5871 reflections
$\theta=2.3-28.2^{\circ}$
$\mu=0.82 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, pale yellow
$0.43 \times 0.25 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.719, T_{\text {max }}=0.880$
10821 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.084$
$S=1.07$
3888 reflections
295 parameters
H -atom parameters constrained

Figure 1
An ORTEP-3 (Farrugia, 1997) view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, $\frac{1}{2}-y, z-\frac{1}{2}$.]

Figure 2
A view of the one-dimensional chain in (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

Figure 3
A view of the two-dimensional hydrogen-bonding (dashed lines) network for (I). The phen ligand and H atoms have been omitted for clarity.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 w-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {ii }}$	0.84 (1)	1.89 (1)	2.7214 (18)	169 (2)
$\mathrm{O} 1 w-\mathrm{H} 1 A \cdots \mathrm{O} 5^{\mathrm{iii}}$	0.84 (1)	2.01 (1)	2.8233 (18)	163 (2)
$\mathrm{O} 1 w-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.85 (1)	1.90 (1)	2.7076 (19)	158 (2)
$\mathrm{O} 2 w-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {iii }}$	0.84 (1)	1.88 (1)	2.7127 (17)	173 (2)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	0.84 (1)	1.80 (1)	2.578 (2)	152 (2)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x, y-1, z$.
The aromatic H atoms were positioned geometrically, and were included in the refinement in the riding-model approximation [C-

metal-organic papers

$\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water and hydroxy H atoms were located in difference Fourier maps and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and fixed isotropic displacement parameters of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S. R., Cai, G. Q., Zhu, L. G. \& Xiao, H. P. (2005). Acta Cryst. C61, m177m179.
Fan, S. R., Zhu, L. G., Xiao, H. P. \& Ng, S. W. (2005a). Acta Cryst. E61, m377m378.
Fan, S. R., Zhu, L. G., Xiao, H. P. \& Ng, S. W. (2005b). Acta Cryst. E61, m563m565.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, S., Zhu, Z. B., Huo, L. H. \& Ng, S. W. (2005). Acta Cryst. E61, m279m281.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

