metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.084 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[cis-diaqua(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II)]- μ_2 -5-sulfonatosalicylato- $\kappa^2 O:O'$]

The title complex, $[Mn(C_7H_4O_6S)(C_{12}H_8N_2)(H_2O)_2]_n$, comprises a one-dimensional chain in which each Mn atom displays a distorted octahedral geometry. Hydrogen-bonding interactions between chains generate a two-dimensional architecture.

Received 31 May 2005 Accepted 6 June 2005 Online 10 June 2005

Comment

Recently, much attention has been paid to metal complexes of 5-sulfosalicylic acid (H₃ssal) because of the structural diversity and biological interest of this ligand (Fan, Cai *et al.*, 2005; Gao *et al.*, 2005; Fan, Zhu *et al.*, 2005*a*). In our previous work on the manganese(II) 1,10-phenanthroline (phen) complex [Mn(phen)₂(H₂O)₂](Hssal)·4H₂O, (II), the doubly deprotonated 5-sulfosalicylate does not coordinate to the metal atom (Fan, Zhu *et al.*, 2005*b*), partly because the phen ligand can strongly chelate to the metal atom. Therefore, a new synthetic procedure, a two-step reaction method, was introduced to the Mn²⁺/H₃ssal/phen system and, as expected, the Hssal²⁻ coordinated complex, (I), was synthesized.

In the title complex, the Mn^{II} atom adopts a distorted octahedral geometry defined by two N donors from one phen ligand, two O atoms from two *cis* water molecules and two O atoms, one from a sulfonyl and one from a carboxyl group of two different Hssal^{2–} ligands (Fig. 1 and Table 1). The Mn–N and Mn–Ow distances are similar to those of (II). The 5-sulfonatosalicylate ligand acts as a linker using one sulfonyl and one carboxyl O atom to extend the structure into a one-dimensional chain (Fig. 2). Hydroxy and uncoordinated carboxyl O atoms form intrachain hydrogen bonds with a carboxyl group and a water molecule, respectively. Between chains, water molecules and sulfonyl O atoms form intermolecular hydrogen bonds, generating a two-dimensional hydrogen-bonding network (Fig. 3 and Table 2).

 ${\rm (\!C\!\!\!\!C\!\!}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Comparison of (II), $[Mn(phen)_2(H_2O)_2]^{2+}$, with (I), $[Mn(phen)(H_2O)_2(Hssal)]$, shows that one phen ligand in II is replaced by an Hssal²⁻ ligand in (I). Two such diverse structures were constructed by different synthetic procedures. For (II), a one-pot synthesis was used, while for (I), a two-step reaction method was used, *i.e.* phen was added after the metal salt had completely reacted with 5-sulfosalicylic acid in the presence of a weak base. Therefore, multi-step reactions are very useful in the construction of different architectures.

Experimental

A mixture of $MnCl_2 \cdot 4H_2O$ (0.199 g, 1.0 mmol), 5-sulfosalicylic acid dihydrate (0.050 g, 0.20 mmol), and 4% pyridine (2 ml) in water (20 ml) was stirred for 17 h. 1,10-Phenanthroline (0.040 g, 0.20 mmol) was then added. The resulting solution was put aside and the solvent was allowed to evaporate at room temperature. After three weeks, pale-yellow block-shaped crystals were obtained.

Crystal data

 $[Mn(C_7H_4O_6S)(C_{12}H_8N_2)(H_2O)_2]$ $M_r = 487.34$ Monoclinic, $P2_1/c$ a = 14.4166 (9) Å b = 7.7234 (5) Å c = 18.6868 (11) Å $\beta = 107.421$ (1)° V = 1985.2 (2) Å³ Z = 4

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.719, T_{max} = 0.880$ 10821 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F, R[F^2 > 2\sigma(F^2)] = 0.030)$ $w = 1/[\sigma^2(F, R[F^2 > 2\sigma(F^2)] = 0.030)$ $wR(F^2) = 0.084$ where P = 0.036S = 1.07 $(\Delta/\sigma)_{max} = 0.2$ 3888 reflections $\Delta\rho_{max} = 0.2$ 295 parameters $\Delta\rho_{min} = -0$ H-atom parameters constrained $\Delta\rho_{min} = 0.2$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1w	2.2316 (14)	Mn1-N2	2.2447 (15)
Mn1 - O2w	2.1255 (14)	S1-O4	1.4595 (12)
Mn1-O2 ⁱ	2.1174 (13)	S1-O5	1.4479 (13)
Mn1-O4	2.1835 (12)	S1-O6	1.4627 (12)
Mn1-N1	2.2659 (15)		
$O2^{i}-Mn1-O1w$	88.61 (5)	O2w-Mn1-O1w	94.12 (5)
$O2^{i}-Mn1-O2w$	97.59 (6)	O2w-Mn1-N1	88.91 (6)
$O2^i - Mn1 - O4$	81.49 (5)	O2w-Mn1-N2	162.63 (6)
O2 ⁱ -Mn1-N1	173.00 (6)	N2-Mn1-N1	73.76 (6)
O2 ⁱ -Mn1-N2	99.68 (6)	05-81-04	113.94 (8)
O4-Mn1-O1w	169.86 (5)	05-81-06	112.67 (8)
O4-Mn1-N1	96.03 (5)	O4-S1-O6	109.13 (7)
O4-Mn1-N2	91.36 (5)	O5-S1-C6	107.69 (8)
O1w-Mn1-N1	93.55 (5)	O4-S1-C6	105.45 (7)
O1w-Mn1-N2	88.13 (6)	O6-S1-C6	107.50 (8)
O2w-Mn1-O4	89.39 (5)		

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

 $D_x = 1.631 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 5871 reflections $\theta = 2.3-28.2^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 295 (2) K Block, pale yellow 0.43 × 0.25 × 0.16 mm

3888 independent reflections 3537 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 26.0^{\circ}$ $h = -14 \rightarrow 17$ $k = -9 \rightarrow 9$ $l = -23 \rightarrow 13$ $w = 1/[\sigma^2(F_o^2) + (0.0466P)^2$

+ 0.5664*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

Figure 1

An *ORTEP-3* (Farrugia, 1997) view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, $\frac{1}{2} - y$, $z - \frac{1}{2}$.]

Figure 2

A view of the one-dimensional chain in (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

Figure 3

A view of the two-dimensional hydrogen-bonding (dashed lines) network for (I). The phen ligand and H atoms have been omitted for clarity.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2w-H1B\cdots O6^{ii}$	0.84 (1)	1.89 (1)	2.7214 (18)	169 (2)
$O1w-H1A\cdots O5^{iii}$	0.84(1)	2.01 (1)	2.8233 (18)	163 (2)
$O1w-H2A\cdotsO1^{i}$	0.85(1)	1.90 (1)	2.7076 (19)	158 (2)
$O2w - H2B \cdots O6^{iii}$	0.84(1)	1.88 (1)	2.7127 (17)	173 (2)
O3−H3A···O2	0.84 (1)	1.80 (1)	2.578 (2)	152 (2)
-			1	

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z.

The aromatic H atoms were positioned geometrically, and were included in the refinement in the riding-model approximation [C-

H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. The water and hydroxy H atoms were located in difference Fourier maps and were refined with a distance restraint of O-H = 0.85 (1) Å and fixed isotropic displacement parameters of $U_{iso}(H) = 0.05$ Å².

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the National Natural Science Foundation of China (50073019).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, S. R., Cai, G. Q., Zhu, L. G. & Xiao, H. P. (2005). Acta Cryst. C61, m177– m179.
- Fan, S. R., Zhu, L. G., Xiao, H. P. & Ng, S. W. (2005a). Acta Cryst. E61, m377– m378.
- Fan, S. R., Zhu, L. G., Xiao, H. P. & Ng, S. W. (2005b). Acta Cryst. E**61**, m563–m565.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gao, S., Zhu, Z. B., Huo, L. H. & Ng, S. W. (2005). Acta Cryst. E61, m279–m281.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.